本文共 817 字,大约阅读时间需要 2 分钟。
预处理部分
auto t = torch::zeros({3,4});
t = torch::ones({3,4});
t = torch::tensor({33,22,11});
加载预训练模型
from torchvision.models import resnet34
import torch.nn.functional as F
import torch.nn as nn
import torch
import cv2
读取图片并归一化
image = cv2.imread("flower.jpg")
image = cv2.resize(image, (224, 224))
input_tensor = torch.tensor(image).permute(2, 0, 1).unsqueeze(0).float() / 225.0
加载模型
model = resnet34(pretrained=True)
模型评估模式
model.eval()
进行预测
output = model(input_tensor)
output = F.softmax(output, 1)
展示结果
print("模型预测结果为第{}类,置信度为{}".format(torch.argmax(output), output.max()))
model = model.to(torch.device("cpu"))
model.eval()
var = torch.ones((1, 3, 224, 224))
traced_script_module = torch.jit.trace(model, var)
traced_script_module.save("resnet34.pt")
转载地址:http://owwfk.baihongyu.com/